IREA

Visualizza articoli per tag: IREA

ponteVenerdì 28 ottobre, nell’ambito di Innovation Village, la fiera-evento sull’innovazione e la promozione di circuiti collaborativi fra ricerca e imprese, si terrà il convegno “Approcci e tecnologie di monitoraggio delle infrastrutture” a cura dell’Istituto per il Rilevamento Elettromagnetico dell’Ambiente del CNR e Knowledge for Business, in collaborazione con l’Ordine Ingegneri Napoli. L’obiettivo è presentare le soluzioni più recenti della ricerca per affrontare le problematiche più rilevanti della rete infrastrutturale nazionale, chiamando al confronto policy makers, gestori delle infrastrutture di trasporto e ricercatori, anche con l’obiettivo di identificare tecnologie e approcci trasferibili al sistema delle imprese.

La gestione e la protezione del patrimonio infrastrutturale dei trasporti nazionali rappresenta un’esigenza prioritaria per il sistema Paese. Gran parte delle infrastrutture di trasporto, infatti, è ormai avanti negli anni e inizia a manifestare problemi di degrado e danno che ne possono inficiare la funzionalità e la sicurezza. Inoltre, le strutture da monitorare sono numerosissime ed in alcuni casi i dati e le informazioni disponibili non sono sufficienti per un monitoraggio completamente affidabile. Risulta dunque cruciale lo sviluppo di sistemi di monitoraggio e diagnostica capaci di fornire risultati effettivamente utili alla manutenzione efficiente e sostenibile delle strutture esistenti, in linea con quanto previsto dal PNRR in tema di interventi per la sicurezza e la resilienza di ponti e viadotti, utilizzando soluzioni tecnologiche e digitali con l’obiettivo di sviluppare una rete di infrastrutture di trasporto moderna, sostenibile e sicura.

Una possibile soluzione è rappresentata da un approccio semplificato e sistemico, dove la possibilità di un’investigazione di dettaglio di tutte le strutture (non sostenibile da un punto di vista economico e logistico) possa essere sostituita da una approccio in due tempi, con una visione in prima battuta “globale” e da remoto, finalizzata a visualizzare e categorizzare lo stato, l’età e le modalità costruttive, e rilevarne criticità, che viene poi seguita, laddove necessario, da un’indagine di dettaglio che si avvale di strumenti specifici per ottenere informazioni sul tipo di danno a cui è soggetto la struttura sotto investigazione.I risultati delle tecnologie di osservazione vanno assimilati nei modelli strutturali anche ricorrendo a Digital Twins delle strutture campione.

Aprirà la discussione il Direttore del DIITET-CNR Emilio Campana, che parlerà di Digital Twins, modelli computazionali di simulazione; progetti e competenze CNR. Interverranno, tra gli altri, Riccardo Lanari e Francesco Soldovieri, rispettivamente Dirigente di ricerca e Direttore dell’IREA-CNR, presentando gli ultimi risultati relativi allUtilizzo dei dati interferometrici satellitari ai fini dell’interpretazione del comportamento strutturale delle costruzioni, e al Monitoraggio in situ con tecnologie non-invasive.

L’evento si terrà dalle 14:30 alle 16:30 presso la Sala Averroè del Centro Congressi di Città della Scienza di Napoli.

Per l’iscrizione all’evento vai a questo link

 



Vai alle altre notizie in evidenza

 

 

 

Pubblicato in Notizie in evidenza
Un nuovo studio condotto da un team italo-statunitense di cui fa parte anche Francesco Soldovieri, direttore dell'Istituto per il Rilevamento Elettromagnetico dell'Ambiente del CNR, e pubblicato su Nature Communications, torna ad avvalorare l’ipotesi – avanzata per la prima volta nel 2018 – della presenza di acqua salata allo stato liquido nel sottosuolo del Pianeta rosso

Figure1La scoperta della presenza di acqua salata sotto la calotta polare meridionale di Marte, resa possibile grazie ad un’indagine condotta con il radar italiano MARSIS dell'ASI montato a bordo della missione Mars Express dell’ESA, risale al 2018. Lo studio, svolto da un team di ricerca interamente italiano, del quale faceva parte anche l'Istituto per il Rilevamento Elettromagnetico dell'Ambiente del Consiglio Nazionale delle Ricerche (IREA-CNR), fu pubblicato sulla prestigiosa rivista scientifica Science.

Due anni dopo un altro studio, pubblicato su Nature Astronomy da parte di un team multidisciplinare composto da tredici ricercatori tra fisici, geologi ed ingegneri, tra cui anche Francesco Soldovieri dell’IREA-CNR, ha confermato la scoperta fornendo un ulteriore prova dell'esistenza di laghi di acqua salata intrappolati sotto il ghiaccio del Polo Sud marziano.

Arriva ora un nuovo studio, pubblicato Il 28 settembre su Nature Communications da un team internazionale a coordinamento italiano, che fornisce nuove prove sull’esistenza di acqua liquida sotto il polo sud di Marte. In particolare, lo studio è stato coordinato dall’Università di Roma Tre e dall’Istituto di Radioastronomia dell’Istituto Nazionale di Astrofisica e vede la partecipazione dell’IREA-CNR insieme a University of Southern Queensland (Australia), Southwest Research Institute (USA) e Planetary Science Institute (USA).

La ricerca ha riguardato i depositi polari marziani meridionali (i cosiddetti SPLD - South Polar Layered Deposits). Lo studio approfondito e la valutazione dell’attenuazione del segnale radar nel ghiaccio dei SPLD, già rilevato in corrispondenza della zona investigata nel secondo studio, ha permesso di giungere a due importanti evidenze.

La prima è che l'attenuazione del segnale di MARSIS è costante nella intera regione analizzata, confermando così l'omogeneità composizionale dei depositi polari alla scala di osservazione del radar MARSIS.

Inoltre, i valori stimati dell’attenuazione hanno permesso di ricalcolare il valore del coefficiente di riflessione alla base dei SPLD e stimare la permittività dielettrica relativa, pari a 40 nell’area altamente riflettente, situazione compatibile solo con la presenza di acqua salata.

Infine, a partire dall’attenuazione stimata è stato possibile ottenere importanti informazioni in termini di contenuto di polvere nei depositi polari (SPLD), compreso tra il 5 e il 12%, e che la temperatura alla base dell'SPLD calcolata finora era stata sottostimata e può facilmente raggiungere i 200K (-73°C), assicurando condizioni compatibili con la presenza di acqua salata allo stato liquido.

L’insieme dei risultati sopracitati confermano quindi la presenza di acqua salata alla base dello SPLD come sola causa delle forti riflessioni basali nella regione di Ultimi Scopuli.

 



Vai alle altre notizie in evidenza

 

 

Pubblicato in Notizie in evidenza
Ricercatori dell'Istituto per il Rilevamento Elettromagnetico dell'Ambiente (IREA) del Consiglio Nazionale delle Ricerche (CNR) presentano a Vienna un nuovo servizio operativo sviluppato per il monitoraggio delle deformazioni nei vulcani attivi
 

CF

Monitorare le deformazioni della superficie terrestre in aree vulcaniche attive, in luoghi spesso di difficile accesso, può non essere un compito facile. Il telerilevamento satellitare può fare la differenza rispetto alle tecniche in-situ, grazie alla sua capacità di coprire aree molto vaste, con una densità di punti di misura molto elevata e a costi relativamente bassi. Questi risultati saranno presentati il 9 aprile a Vienna in una conferenza scientifica (Sala M2 alle 9:30) e una conferenza stampa (alle 13:00) nel corso della prossima Assemblea Generale dell'Unione Geofisica Europea (EGU) che si terrà dal 7 al 12 aprile.

L'interferometria SAR differenziale satellitare (DInSAR) permette di misurare le deformazioni del suolo con un'elevata precisione e in qualsiasi condizione atmosferica. La crescente diffusione dell'uso di questa tecnica è dovuta alla recente disponibilità di grandi archivi di dati SAR facilmente accessibili, come quelli forniti, dalla fine del 2014, dalla costellazione Copernicus Sentinel-1. Attualmente Sentinel-1 fornisce dati SAR con una cadenza fino a 6 giorni su tutta la Terra. È quindi chiaro che con una disponibilità di dati così ampia, globale, costante e affidabile è possibile utilizzare la tecnica DInSAR per scopi di monitoraggio, come quelli relativi alle misurazioni del movimento del suolo nelle aree vulcaniche.

In questo campo i ricercatori dell'IREA-CNR hanno sviluppato un servizio operativo per monitorare la deformazione crostale nei vulcani attivi attraverso l'uso della tecnica DInSAR e dei dati Sentinel-1. Il sistema progettato è completamente automatico e il processo è attivato dalla disponibilità, per ogni sito vulcanico monitorato, di nuovi dati Sentinel-1. I dati satellitari vengono acquisiti ed elaborati attraverso la nota tecnica DInSAR P-SBAS (Parallel Small BAseline Subset), completamente sviluppata presso l’IREA-CNR, che permette la generazione delle serie temporali di deformazione dell'area investigata.

In qualità di Centro di Competenza (CdC) del Dipartimento di Protezione Civile (DPC), l’IREA utilizza tale servizio per monitorare la deformazione del suolo dei principali vulcani italiani attivi, come la caldera dei Campi Flegrei, il Vesuvio, Ischia, l’Etna e lo Stromboli, e fornisce aggiornamenti mensili sullo stato di deformazione dei vulcani al Dipartimento e altri Centri di Competenza dedicati al monitoraggio dei vulcani.

Sebbene il servizio sia destinato al DPC, esso è stato realizzato per essere facilmente trasferibile e replicabile per altri vulcani della Terra, beneficiando così pienamente delle funzionalità di monitoraggio DInSAR di Sentinel-1.
 

Figura

 Mappa di velocità media di deformazione verticale dei Campi Flegrei (Italia) generata utilizzando i dati acquisiti dai satelliti Sentinel-1.
Il grafico mostra l'evoluzione temporale della deformazione che, da marzo 2015, ha portato a un sollevamento massimo di circa 25 cm. Contiene dati Copernicus modificati © 2019.
 
 
Ringraziamenti
Questo lavoro è supportato dall'accordo 2019-2021 fra IREA-CNR e Protezione civile italiana, dal progetto H2020 EPOS-IP (GA 676564), dal progetto I-AMICA (PONa3_00363) e dall'accordo IREA-CNR / DGS-UNMIG.

 


Vai alle altre notizie in evidenza 

 

 

Pubblicato in Notizie in evidenza
Il terremoto dello scorso 29 dicembre in Croazia ha causato una deformazione del suolo di circa 40 centimetri. E’ quanto emerso dallo studio un team di ricercatori dell’Istituto per il Rilevamento Elettromagnetico dell’Ambiente del Consiglio Nazionale delle Ricerche utilizzando i dati acquisiti dal satellite europeo Sentinel-1.
 
Il 29 dicembre 2020 alle ore 11:19:54 UTC (Coordinated Universal Time) un terremoto di magnitudo 6.4 ha colpito la Croazia centrale, nei pressi della città di Petrinja, causando 7 vittime, numerosi feriti e ingenti danni agli edifici. Si tratta del più forte terremoto verificatosi in Croazia dall'avvento dei moderni sismometri.

L’evento si è verificato lungo una faglia trascorrente destra, nota in letteratura come faglia di Petrinja, ed è stato preceduto da due scosse sismiche di magnitudo 4.7 e 5.2, verificatesi il 28 dicembre. Nelle ore e nei giorni successivi si sono inoltre verificate numerose scosse di assestamento che hanno raggiunto una magnitudo massima di 4.8.

Tramite la tecnica dell’Interferometria Differenziale Radar ad Apertura Sintentica (DInSAR), un team di ricercatori dell’Istituto per il Rilevamento Elettromagnetico dell’Ambiente del Consiglio Nazionale delle Ricerche (IREA-CNR) ha studiato il campo di deformazione superficiale indotto dall’evento sismico. In particolare, sono stati utilizzati i dati acquisiti dal satellite europeo Sentinel-1 il 18 e il 30 dicembre 2020 lungo orbita ascendente e il 23 dicembre 2020 e il 4 gennaio 2021 lungo orbita discendente, che hanno permesso di produrre gli interferogrammi mostrati in Figura 1a e 1b. In essi, ogni fascia di colore (frangia) indica uno spostamento del suolo di circa 2.8 centimetri, con una deformazione massima di circa 40 centimetri.

A partire dagli interferogrammi generati, sono state poi derivate le corrispondenti mappe di deformazione (vedi Figura 1c e 1d) tramite appropriate procedure note come phase unwrapping. Nel caso dell’orbita ascendente, la mappa mostra una deformazione caratterizzata da valori negativi fino a un massimo di -32 cm e valori positivi fino a un massimo di 38 cm, che indicano rispettivamente l’aumento e la diminuzione della distanza tra il sensore e il suolo. Nel caso dell’orbita discendente, la mappa mostra una deformazione caratterizzata da valori negativi fino a un massimo di -16 cm e valori positivi fino a un massimo di 29 cm.

Inoltre, combinando le mappe di deformazione ottenute dalle immagini Sentinel-1 ascendenti e discendenti, è stato possibile stimare gli spostamenti, sia per quanto concerne la componente verticale (Figura 1e), sia nella direzione est-ovest (Figura 1f). La mappa di spostamento verticale mostra un’area affetta da una subsidenza massima di -13 cm e da una zona in sollevamento con valori massimi di 19 cm; inoltre, la mappa di spostamento orizzontale mostra spostamenti massimi di 43 cm verso ovest e di 42 cm verso est.

L’attività svolta è stata realizzata nell’ambito nell'ambito dell'Accordo 2019-2021 fra CNR-IREA e il Dipartimento della Protezione Civile (DPC), del progetto EPOS (European Plate Observing System) e del progetto "Infrastruttura di Alta tecnologia per il Monitoraggio Integrato Climatico-Ambientale" (I-AMICA) finanziato dal MIUR nell'ambito del Programma Operativo Nazionale (PON). I risultati presentati contengono dati acquisiti nell’ambito del programma Copernicus 2015.
 
interferogramma croazia
 
Figura 1. a) Interferogramma co-sismico da dati radar Sentinel-1 relativo alla coppia 18122020-30122020 ascendente (Track 146). b) Interferogramma co-sismico da dati radar Sentinel-1 relativo alla coppia 2312020-04012021 discendente (Track 124). Il rettangolo bianco indica l’area rappresentata nei pannelli successivi. c) Mappa di deformazione co-sismica in linea di vista relativa all’interferogramma Sentinel-1 mostrato in Figura 1a. d) Mappa di deformazione co-sismica in linea di vista relativa all’interferogramma mostrato in Figura 1b. Mappe delle componenti verticale (e) ed Est-Ovest (f) dello spostamento del suolo. La stella bianca indica la posizione dell’epicentro del terremoto di magnitudo 6.4 avvenuto il 29 dicembre 2020.
 

Vai alle altre notizie in evidenza  
Pubblicato in Notizie in evidenza
Sei ricercatori IREA compaiono nella lista dei World's Top Scientists redatta dalla Stanford University. Si tratta di Romeo Bernini, Gianfranco Fornaro, Riccardo Lanari, Francesco Mattia, Francesco Soldovieri ed Eugenio Sansosti.
 

La rivista internazionale Plos Biology ha pubblicato recentemente uno studio che individua i ricercatori scientifici più citati al mondo nelle varie discipline nel corso della loro carriera. Lo studio si basa sui dati ricavati da Scopus, il principale database per le pubblicazioni scientifiche, relativi a 7 milioni di ricercatori di università e centri di ricerca di tutto il mondo in 22 aree scientifiche e 176 sottocategorie.

L'elenco, redatto da tre ricercatori della Stanford University, contiene circa 160.000 nomi e include gli scienziati che sono tra i primi 100.000 in tutti i campi e quelli che sono nel 2% al top nelle loro specifiche aree di ricerca.

Nell'elenco dei “Top Scientist” mondiali figurano 6 ricercatori dell’IREA-CNR, a conferma della qualità della ricerca scientifica dell’Istituto. Sono Romeo Bernini, Gianfranco Fornaro, Riccardo Lanari, Francesco Mattia, Francesco Soldovieri ed Eugenio Sansosti.

Romeo Bernini è Dirigente di ricerca presso l’IREA di Napoli. La sua attività di ricerca è rivolta allo sviluppo di sensori in fibra ottica e sensori optoelettronici ed optofluidici integrati per applicazioni ambientali, industriali, biochimiche e biomedicali. E’ stato visiting scientist presso il DIMES (Delft Institute of Microelectronics and Submicrontechnology), Technical University of Delft. Nel 2001 ha vinto il best Doctoral Thesis Award in Optoelectronics del IEEE-LEOS Italian Chapter. E’ autore di oltre 100 pubblicazioni su riviste internazionali.

Gianfranco Fornaro è Dirigente di ricerca presso l’IREA di Napoli e svolge attività di ricerca nel campo dell’elaborazione di dati Radar ad Apertura Sintetica (SAR). Ha tenuto corsi in qualità di Professore Aggiunto in diverse Università nell’area Telecomunicazioni, attualmente presso l’Università Federico II. E’ stato visiting scientist presso l’Ente Spaziale Tedesco ed il Politecnico di Milano, e consulente scientifico per conto delle Nazioni Unite. Ha svolto attività di docenza anche in diverse Scuole di Alta formazione presso Enti di Ricerca internazionali, tra cui l’Agenzia Aerospaziale Giapponese a Tokyo e l’Agenzia Spaziale Argentina per conto della IEEE. E’ stato docente delle Lecture Series della NATO e dal 2013 svolge lezione presso la “Summer School on Radar/SAR” del Fraunhofer Institute a Bonn. Dal 2017 è Fellow della IEEE. Ha ricevuto diversi premi e riconoscimenti internazionali tra cui il premio Mountbattern della IEE nel 1997 ed il premio “Best Paper Award” della rivista IEEE Geoscience and Remote Sensing Letters nel 2011.

Riccardo Lanari è Dirigente di ricerca e Direttore del CNR-IREA dal dicembre 2010. I suoi interessi di ricerca riguardano principalmente l’elaborazione numerica dei dati Radar ad Apertura Sintetica (SAR). E’ autore di più di 120 lavori pubblicati su riviste internazionali, di un libro edito dalla casa editrice americana CRC-PRESS e di due brevetti. E’ stato visiting scientist presso l’Istituto per le Scienze Spaziali ed Astronautiche (ISAS, Giappone), l’Istituto per le Radio-Frequenze dell’Ente Spaziale Tedesco (DLR, Germania), il Jet Propulsion Laboratory (JPL, USA); in quest'ultimo caso ha ricevuto dalla NASA una Recognition (nel 1999) ed un Award (nel 2001). E’ Distinguished Speaker della Geoscience and Remote Sensing Society della IEEE (IEEE-GRSS) e Fellow della IEEE society. Nel 2015 ha vinto il premio “Guido D’Orso” per la sezione Ricerca. Nel novembre 2016 è stato nominato dalla European Geosciences Union (EGU) vincitore della Christiaan Huygens Medal 2017 della EGU. E’ stato insignito nel 2020 dell’IEEE GRSS Fawwaz Ulaby Distinguished Achievement Award per gli eccezionali contributi e la leadership nei settori della elaborazione di dati SAR e InSAR.

Francesco Mattia è Primo Ricercatore del CNR-IREA e responsabile della Sede secondaria dell‘IREA di Bari. E’ stato visiting scientist presso la University of California, Santa Barbara (USA) e presso la Ohio State University (USA). E’ stato membro dell’Earth Science Advisory Committee dell'ESA e del Comitato consultivo dell'ASI per le attività di osservazione della terra italiane in ESA. La sua attività scientifica riguarda principalmente l'interpretazione fisica e la modellizzazione dello scattering elettromagnetico da superfici terrestri e l'inversione di dati SAR in parametri biogeofisici come il contenuto di umidità del suolo, la rugosità del suolo e la biomassa della vegetazione.

Eugenio Sansosti è Dirigente di ricerca presso l’IREA di Napoli dove si occupa di tecniche di elaborazione dei segnali SAR e le loro applicazioni alla geofisica. È stato Professore a Contratto di Teoria dei Segnali presso l’Università degli Studi di Reggio Calabria e di Comunicazioni Elettriche e Teoria dei Segnali presso l’Università degli Studi di Cassino. Ha collaborato con l’Agenzia Spaziale Tedesca (DLR, Germania), con il Jet Propulsion Laboratory, Pasadena, California (JPL, USA) ed è stato Image Processing Adviser presso l’Istituto Tecnologico de Aeronautica (ITA), Sao José dos Campos, SP, Brasile, per conto delle Nazioni Unite (ONU). È stato membro del team italiano di supporto scientifico alla Shuttle Radar Topography Mission (SRTM) della N.A.S.A. E’ Senior Member dell’IEEE.

Francesco Soldovieri è Dirigente di ricerca presso l’IREA di Napoli. I suoi principali interessi di ricerca riguardano la diagnostica elettromagnetica, la diffusione elettromagnetica inversa, le applicazioni di radar imaging, la diagnostica di antenne, il monitoraggio dello stato del mare da dati radar. E’ stato Principal Investigator/Technical Manager di progetti nazionali ed Internazionali, tra i quali ISTIMES (FP7), HERACLES (H2020) e AMISS (FP7-Marie Curie Action), e Presidente della Division on Geosciences Instrumentation and Data Systems della European Geosciences Union. Ha fatto parte del team di Marsis coinvolto nell’attività di ricerca che ha condotto alla scoperta dell’acqua liquida su Marte; i risultati sono stati pubblicati su Science e Nature Astronomy. Inoltre, è stato coinvolto nello studio della stratigrafia del sottosuolo, a mezzo georadar, della faccia nascosta della Luna, come testimoniato dal lavoro pubblicato su Science Advances. E’ autore di circa 240 lavori riviste internazionali, di 10 capitoli di libro e curatele ed è stato Editor dei libri “Sensing the Past” e “ICT for Smart Water Systems: Measurements and Data Science”, editi da Springer nel 2017 e 2021.

L’articolo, dal titolo “Updated science-wide author databases of standardized citation indicators” è pubblicato al link:

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000918

I dati sono ricavabili dalla tabella Table-S6-career-2019.xlsx scaricabile a questo link: https://data.mendeley.com/datasets/btchxktzyw/2

 
Pubblicato in Notizie in evidenza
Una recente analisi relativa al ponte Morandi mostra l’assenza di deformazioni, prima del suo crollo, nei risultati ottenuti dai dati radar satellitari della costellazione italiana COSMO-SkyMed. A mostrare questa evidenza uno studio condotto da un team di ricercatori dell’Istituto per il Rilevamento Elettromagnetico dell’Ambiente del CNR pubblicato su Remote Sensing. I risultati mostrati sono in contrasto con una precedente indagine pubblicata sulla stessa rivista.
 
Il 14 agosto del 2018 il ponte sul torrente Polcevera sull'autostrada A10 Genova-Savona, costruito negli anni '60 su progetto dell'ingegnere Morandi, è crollato procurando la morte di 43 persone.

A seguito del tragico avvenimento, un team di ricercatori dell’Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA, Napoli) del Consiglio Nazionale delle Ricerche (CNR) ha condotto uno studio approfondito, basato sull’elaborazione di dati radar satellitari, sui possibili movimenti pre-crollo associati all’area interessata dal disastroso evento nell’ambito delle attività svolte in qualità di Centro di Competenza per il Dipartimento di Protezione Civile Italiana per lo studio da satellite dei fenomeni di deformazione del suolo e del costruito. Tale studio ha dimostrato l’assenza di significativi spostamenti precursori del crollo del ponte Morandi, nelle osservazioni radar satellitari, in evidente contrasto con quanto riportato nel lavoro di Milillo et al. (2019) dal titolo “Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy”, pubblicato sulla rivista scientifica Remote Sensing, aprendo così nuovi margini di discussione.

 

Ponte Morandi

Mappe in falsi colori delle velocità medie di deformazione rilevate (A), sovrapposte ad un’immagine di Google Earth, e relativi plot dei punti in corrispondenza delle carreggiate Nord (B) e Sud (C) del ponte Morandi di Genova. Tali risultati, ottenuti elaborando i dati radar satellitari acquisiti dalla costellazione satellitare COSMO –SkyMed dell’ASI (orbite ascendenti e discendenti) nel periodo immediatamente prima del crollo del ponte Morandi (Gennaio 2011-Agosto 2018) con le tecniche InSAR avanzate SBAS e TomoSAR, non mostrano significative deformazioni che possano rappresentare precursori del crollo del ponte Morandi.
 
“Attraverso l’elaborazione tramite tecniche InSAR avanzate di dati SAR acquisiti dalla costellazione COSMO-SkyMed dell’Agenzia Spaziale Italiana nel periodo immediatamente precedente al crollo (Gennaio 2011 – Agosto 2018)” spiega l’ing. Riccardo Lanari, direttore facente funzioni del CNR-IREA, “sono state generate serie temporali di deformazione relative all’area del viadotto che hanno rilevato l’assenza di movimenti superficiali precursori del crollo del ponte”.

“Le caratteristiche di questi sensori, in particolare la risoluzione spaziale molto spinta (pochi m) e la lunghezza d’onda molto corta (circa 3 cm)” aggiunge l’ing. Diego Reale, ricercatore IREA partecipante al team, “hanno consentito di effettuare un’analisi dettagliata delle deformazioni relative ad un’infrastruttura complessa come il ponte Morandi, in termini di densità di punti di misura e di capacità di monitorare nel tempo il comportamento dell’intera struttura, con accuratezze millimetriche”.

“I prodotti delle elaborazioni interferometriche ottenute utilizzando due approcci indipendenti e alternativi, quali la tecnica Small BAseline Subset (SBAS) e la tecnica di Tomografia SAR, hanno mostrato una significativa consistenza e similarità tra loro in termini sia di copertura spaziale sia di entità della deformazione misurata” sottolinea l’ing. Manuela Bonano, altro ricercatore IREA membro del team, “confermando la sostanziale assenza di movimenti superficiali precursori del crollo del ponte Morandi”.

I risultati ottenuti sono stati presentati nel lavoro dal titolo “Comment on “Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy”, by Milillo et al. (2019)", pubblicato a Dicembre 2020 sulla stessa rivista scientifica Remote Sensing.

Foto in copertina: LaPresse


Vai alle altre notizie in evidenza 

 

Pubblicato in Notizie in evidenza
incendioLa stagione estiva 2021 è stata caratterizzata da eventi estremi legati al cambiamento climatico globale, quali le piogge torrenziali che hanno devastato l’Europa continentale, le ondate anomale di calore che hanno interessato il Nord Europa e la Scandinavia e la serie di incendi di vaste proporzioni che stanno interessando l’intero bacino del Mediterraneo. I fenomeni estremi sopra citati potrebbero essere riconducubili agli effetti dei cambiamenti climatici globali, la cui ampia portata è stata confermata dal 6th Assessment Report dell’IPCC.
In questo contesto un incendio di notevole portata si è sviluppato in Sardegna, nella regione del Montiferru tra il 23 e il 29 luglio, distruggendo quasi 12000 ettari di patrimonio forestale e paesaggistico e creando ingenti danni alle proprietà. L’evento è stato talmente esteso e di severità significativa da richiedere l’aiuto di mezzi aerei di diverse nazioni europee per estinguere i fuochi.
Le tecnologie satellitari rappresentano uno strumento fondamentale per monitorare questi fenomeni, fornire informazioni alle unità di intervento durante l’evento di crisi e valutare i danni arrecati al territorio e patrimonio naturale. In tale ambito, ricercatori dell’Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA) e dell’Istituto per la BioEconomia (IBE) del Consiglio Nazionale delle Ricerche (CNR) hanno elaborato in tempo reale le immagini acquisite dai sensori della costellazione europea Copernicus Sentinel-1 e Sentinel-2, per valutare l’estensione delle aree bruciate e la severità dei fuochi.
top panels incendi
Figura 1. In alto: serie di immagini derivate da dati Sentinel-2 (S-2) e Sentinel-1 (S-1) relative alla zona di Montiferru in Sardegna percorsa da fuochi nel periodo 5 – 30 luglio 2021. Le immagini S-2 sono il risultato di una composizione a falsi colori del segnale riflesso dalle superfici al momento del passaggio del sensore mentre le mappe da S-1 riportano le differenze del segnale radar retro-diffuso dal terreno relative ai periodi di osservazione 18-24 Luglio 2021 e 24-30 Luglio 2021. In basso: distribuzione spaziale dei fuochi attivi come rilevati dal sistema FIRMS (Fire Information for Resource Management System) nell’arco temporale di osservazione.
 
La Figura 1 mostra in alto l’evoluzione dell’area interessata dai fuochi, così come osservata nelle bande del visibile dal sensore Sentinel-2 e nelle microonde dal sensore RADAR Sentinel-1 e, in basso, i fuochi attivi sviluppatesi nella zona come rivelati analizzando i dati messi a disposizione dal “Fire Information for Resource Management System“. Si può notare come i risultati ottenuti dal team del CNR siano in accordo con i dati del FIRMS e forniscano anche informazioni complementari per descrivere la dinamica dell’evento.
 
incendi 2
Figura 2. In alto: dati satellitari utilizzati per l’analisi dell’evento (Active Fire, immagini Ottiche Sentinel-2 e Sentinel-1). In basso: mappe dei risultati ottenuti (estensione delle aree bruciate e severità dei fuochi 

 

Grazie all’analisi di questi dati è stato possibile realizzare le mappe di estensione delle aree bruciate e severità dei fuochi riportate in Figura 2 e stimare una superficie interessata di più di 11000 ettari con livelli di danno molto intenso e perdita del patrimonio naturale. Lo studio dell'incendio boschivo del Montiferru conferma come l'uso combinato di dati Sentinel 1 e Sentinel 2 rappresenti un potente strumento, ormai maturo, capace di monitorare le aree interessate dal fuoco, mentre l’evento stesso è in corso, e fornendo una rapida valutazione dei danni associati subito dopo che l’evento è terminato. Si noti come in Figura 1 per la data del 25 luglio vi sia un perfetto accordo tra fuochi attivi e mappatura da dati RADAR (le zone più scure sono quelle associate agli incendi). Lo strumento radar si è rivelato in questo caso interessante per lo studio delle fasi di innesco della catena di incendi verificatisi nell’area di interesse e per studiarne i meccanismi di propagazione. Infine, le aree bruciate e le mappe della severità dei fuochi possono fornire preziose informazioni geo spaziali per guidare, ad esempio, indagini sul campo post-evento e quale supporto alla pianificazione delle attività di mitigazione e prevenzione da futuri eventi calamitosi.

 
Pubblicato in Notizie in evidenza
Linee guidaIl primo documento relativo alle Linee Guida per l’uso dei dati interferometrici satellitari finalizzato all’interpretazione e alla valutazione del comportamento strutturale delle costruzioni è stato pubblicato il 10 ottobre 2023 ed è attualmente sottoposto a inchiesta pubblica fino al prossimo 15 Novembre per eventuali miglioramenti.
Il documento nasce dall’esigenza da parte del Dipartimento della Protezione Civile Italiana di promuovere e sostenere un’attività volta ad approfondire e chiarire gli aspetti fondamentali sull’utilizzo e sulle possibili applicazioni delle tecniche di Interferometria SAR Differenziale (DInSAR) satellitare nell’ambito dello studio del comportamento strutturale delle costruzioni. Tale attività è stata condotta in sinergia con il consorzio interuniversitario ReLUIS (Rete dei Laboratori Universitari di Ingegneria Sismica e Strutturale) e un gruppo di ricercatori dell’Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA-CNR).
“Le potenzialità offerte dall’Interferometria SAR satellitare nel campo del monitoraggio dell’ambiente naturale e del patrimonio costruito sono notevoli” spiega l’Ing. Manuela Bonano, primo ricercatore dell’IREA, che ha coordinato il contributo dell’IREA alla stesura delle suddette Linee Guida. “Grazie al numero crescente di immagini SAR acquisite dai sensori satellitari attualmente in orbita, alle loro elevate frequenze di rivisitazione e alla maggior risoluzione spaziale delle corrispondenti immagini RADAR, le tecniche DInSAR avanzate sono sempre più spesso utilizzate per analizzare e monitorare nel tempo le deformazioni del suolo e delle strutture. Tale risultato si ottiene attraverso la generazione di mappe spazialmente dense di velocità media di spostamento e delle relative serie temporali di deformazione alla scala della singola infrastruttura o edificio, con accuratezze millimetriche”, sottolinea ancora l’Ing. Bonano.
La conoscenza dell’evoluzione temporale di tali spostamenti, ottenuti dall’elaborazione di un gran numero di dati satellitari acquisiti su un’area di interesse per periodi anche superiori a 10 anni, può rappresentare un elemento determinante per valutare lo stato di salute delle strutture ed infrastrutture, ma necessita di una chiave interpretativa avanzata per valutare l’impatto di tali deformazioni sul comportamento strutturale delle costruzioni. Da questa necessità scaturiscono le presenti Linee Guida, le quali hanno l’obiettivo e l’ambizione di definire un percorso scientificamente solido per l’uso appropriato e ottimale dell’Interferometria SAR satellitare nella valutazione dei comportamenti delle costruzioni e del loro stato di salute. Ciò permette da un lato il ridimensionamento di aspettative eccessive rispetto a tale strumento, dall’altro il chiarimento che, se correttamente utilizzato e interpretato, esso può fornire un prezioso ausilio alla diagnosi strutturale.
L'IREA è ampiamente coinvolta in diversi progetti scientifici finanziati dal Piano Nazionale di Ripresa e Resilienza (PNRR), finalizzati a potenziare la disponibilità, l’accesso e l’utilizzo delle tecnologie satellitari da parte della comunità scientifica e istituzionale, tramite lo sviluppo di nuovi metodi d’indagine e applicazioni a supporto di comuni, ministeri e del Dipartimento della Protezione Civile, che consentono il controllo del nostro territorio in modo sempre più preciso e frequente. “In tale contesto”, afferma l’ing. Riccardo Lanari, Dirigente di Ricerca dell’IREA-CNR, “la sinergia tra l’attuale costellazione nazionale COSMO-SkyMed di prima e seconda generazione e la futura costellazione satellitare per l’Osservazione della Terra denominata IRIDE, realizzata in Italia su iniziativa del Governo con risorse PNRR, rappresenterà un elemento strategico per l’aumento della resilienza dell’ambiente costruito”.
mappa llggMappa geocodificata (in falsi colori) della velocità media di deformazione in LOS, espressa in cm/anno e ottenuta dall’elaborazione SBAS-DInSAR a piena risoluzione spaziale dei dati CSK/CSG acquisiti da orbite ascendenti nell’intervallo Marzo 2011 – Agosto 2021, relativa all’intera area metropolitana di Roma. A sinistra, dall’alto verso il basso sono riportate le viste zoomate delle velocità di deformazione relative al ponte regina Margherita, a un edificio in Viale Giustiniano Imperatore e all’area del raccordo autostradale A90/A91 Roma-Fiumicino, insieme alle serie storiche di deformazione relative a tre punti localizzati nelle zone di massima deformazione.
 
Pubblicato in Notizie in evidenza
L’evento, co-organizzato dal Dipartimento scienze del Sistema Terra e Tecnologie per l’Ambiente e gli istituti IREA, ISAC e ISMAR del CNR e dalla fondazione IMC, intende proporre una riflessione sui cambiamenti del ruolo della ricerca in un contesto in cui le relazioni tra scienza, politica e società sono oggetto di discussione e ridefinizione globale. Il riferimento, in particolare, è alla Planetary Health che, al concetto di salute dell’OMS come benessere fisico, mentale e sociale, aggiunge i legami di interdipendenza tra sistemi naturali e sociali e promuove una visione olistica e interconnessa del pianeta. La prospettiva è in linea con gli Obiettivi dell’Agenda 2030 delle Nazioni Unite, che mirano a costruire un mondo più sano e più giusto, per tutti gli esseri viventi, in armonia con l’ambiente.
L’evento sarà anche l’occasione per condividere temi ed obiettivi della nuova Collana edizioni CNR “Scienziati in Affanno?”, il cui primo numero è dedicato interamente alla Scienza post-normale che considera la necessità di ricorrere a tutte le conoscenze disponibili – non solo scientifiche – per governare le crisi che sempre più caratterizzano le società contemporanee. 

Ulteriori informazioni sono sul sito del centenario CNR.

La locandina con il programma della giornata è disponibile a questo link
L’evento sarà anche trasmesso in streaming a questo link
 
Pubblicato in Notizie in evidenza
Martedì, 26 Settembre 2023 15:21

Notte Europea dei Ricercatori 2023

Immagine Notte dei ricercatoriTorna venerdì 29 settembre la “Notte europea dei ricercatori”, la manifestazione promossa dalla Commissione Europea a partire dal 2005 per avvicinare la scienza al grande pubblico, sensibilizzare la collettività sul’importanza dell’innovazione e della ricerca per il benessere collettivo e far crescere l’interesse dei più giovani nei confronti delle professioni scientifiche.
Insieme agli altri Istituti della rete CNR-CREO (Campania REteOutreach) l’IREA sarà presente con i suoi ricercatori e ricercatrici in piazza del Gesù a Napoli a partire dalle ore 17.00 per presentare le sue attività di ricerca anche con l’aiuto della realtà virtuale. Nel corso dell’evento, dal titolo “Osserviamo l’ambiente coi radar”, verrà mostrato inoltre il principio di funzionamento di un sistema radar per la localizzazione di oggetti nascosti.
La proposta rientra nella più ampia programmazione del progetto STREETS (Science, Technology and Research for Ethical Engagement Translated in Society) di cui CNR-CREO è partner. Coordinato dall’Università degli studi di Napoli Federico II, STREETS è un progetto multidisciplinare e intersettoriale che, calandosi nella realtà quotidiana e per le “strade” della Campania e del Lazio Meridionale, pone come obiettivo la diffusione della cultura e il racconto dell’impegno, dell’ingegno e della passione dei ricercatori.
Il progetto e il programma completo sono on line su www.nottedeiricercatori-streets.it
Tra le proposte che vedono coinvolti ricercatori dell'IREA ci sono anche due spettacoli che si terranno a Roma a partire dalle 22:00 del 29 e 30 settembre: il primo, dal titolo “Dottò, ma quando scoppia il Vesuvio?” sfrutta il potere di immagini, video e musica, per raccontare l’avvincente storia di uno dei vulcani più imponenti d’Italia; nel secondo,  C’era una volta il pianeta Terra”, racconti e musica dal vivo accompagneranno alla scoperta dei principali eventi geologici accaduti fino ai giorni nostri per interrogarsi su un futuro che sembra segnato dall’impatto dell’uomo. 
 
Pubblicato in Notizie in evidenza
Pagina 4 di 6

Una delle attività di ricerca irea

Seguici su

                  Immagine twitter          Immagine facebook 

 

                         

Chi è online

 413 visitatori online